Complete the unit circle below.

Inside the circle, label the radian measure of each point.

Outside the circle, label the corresponding x -and y -coordinates of each point.

SCORE: _____/8 PTS $(\frac{1}{2}$ POINT DEDUCTED FOR EACH ERROR)

Use the unit circle above to fill in the blanks below. Simplify all answers (including rationalizing denominators).

SCORE: _____/4 PTS
Write "UNDEFINED" if the expression has no value.

[a]
$$\csc \frac{7\pi}{4} = \frac{-\sqrt{2}}{-\sqrt{2}} = \frac{-2\sqrt{2}}{\sqrt{2}}$$
 [b] $\tan \frac{2\pi}{3} = \frac{-\sqrt{3}}{2} = \frac{\sqrt{3}}{2} = \frac{-\sqrt{3}}{2} = -\sqrt{3}$

$$[c] \cot \frac{7\pi}{6} = \frac{3}{2} = 3$$

$$[d] \sec \frac{3\pi}{2} = \underbrace{\text{UNDEFINED}}_{0}$$

SCORE: /5 PTS

[a]
$$-\frac{10\pi}{3}$$
 is co-terminal with $\frac{2\pi}{3}$ (NOTE: Your answer must be between 0 and 2π)

$$\frac{10\pi}{3} = \frac{10\pi}{3}$$

[b]
$$\sin\left(-\frac{10\pi}{3}\right) = \frac{\sqrt{3}}{2}$$
 [c] The supplement of $\frac{2\pi}{7}$ radians is $\frac{5\pi}{7}$ $\pi = \frac{11\pi}{3} = \frac{5\pi}{3}$ [d] 99 degrees $= \frac{11\pi}{20}$ radians [e] $\frac{9\pi}{20}$ radians $= \frac{81}{2\pi}$ degrees $= \frac{2\pi}{7}$

[d] 99 degrees =
$$\frac{1}{20}$$
 radians [e] $\frac{9\pi}{20}$ radians = $\frac{8}{20}$ degrees = $\frac{1}{20}$ suppose $\sin t = -\frac{5}{13}$ and $\cos t = \frac{12}{13}$. Fill in the blanks below. Simplify all answers.

$$|\sec t| = \frac{13}{12} \frac{1}{\cos t} = \frac{13}{13}$$

$$|\sec t| = \frac{13}{12} \frac{1}{\cos t} = \frac{13}{13}$$

$$|\sec t| = \frac{13}{13} \frac{1}{\cos t} = \frac{12}{13}$$

$$|\cos(-t)| = \frac{12}{13} \cos(-t) = \frac{12}{13}$$

In the diagram of a central angle on the right,

the radius of the circle is 18 mm and the intercepted arc has length 12 mm. (NOTE: The diagram is NOT drawn to scale.)

[a] The central angle is
$$\frac{2}{3}$$
 radians. $5 = \sqrt{6} = \frac{5}{4} = \frac{12}{18} = \frac{2}{3}$

[b] The area of the intercepted sector is
$$108 \text{ mm}^2$$
. $A = \frac{1}{2}v^2\Theta = \frac{1}{2}(18)^2 \frac{2}{3} = 108$

[c] If an object is moving around the circle at a linear speed of 60 mm/s, $V = VW \longrightarrow W = \frac{10}{18} = \frac{10}{3}$

its angular speed is $\frac{10}{3}$ RADIANS

(specify the units)